Module 1

Introduction — running IATEX,
chapters, special commands

Reference material

I hope you will be able to use these course notes as a handy guide in the future. How-
ever they almost certainly won’t be able to meet all of your specfic requirements, so I
recommend the following references. Your department will hopefully have a copy of at
least one of the books listed — the ANU library also has a limited number of copies.

o LaTeX: A Document Preparation System
Leslie Lamport
2nd ed., Addison-Wesley, Reading, Massachusetts, 1994.

A very nicely written introduction by the creator of IXTEX.

o The BTEX Companion
Goossens, Mittelbach and Samarin
Addison-Wesley, Reading, Massachussets, 1994.

A more complete guide to all of IATEX’s functionality, including many of the spe-
cialised packages which are now available. Chapter 8, “Higher Mathematics”, is
available at http://www.ctan.org/tex-archive/info/companion-rev/ch8.pdf

o The TEX User’s Group (TUG)
http://www.tug.org

o The Comprehensive TEX Archive Network (CTAN)
http://www.ctan.org

© 2004 Chris Wetherell/GILP, http://wwwmaths.anu.edu.au/~chrisw/LaTeX/

1-1

1-2 Module 1: Introduction

A brief history of ETEX

In the 1970s Donald Knuth invented a mathematical typesetting package called TEX,
pronounced “tek” — the “X” represents the Greek letter “x”. In the 1980s Leslie
Lamport significantly increased its user-friendliness and functionality with the package
TEX, pronounced “lah-tek” or “lay-tek”, which is essentially just a set of macros for
the existing TEX system. Today there are numerous packages which extend INTEX’s
capabilities even further, and new ones are being written all the time. (It is convention
to write TeX and LaTeX when you can’t use the special symbols, in email for example.)

Unlike a WYSIWYG! editor like Microsoft Word, IATEX requires that we encode our
typesetting instructions with a series of special commands in a plain text file. Sounds
like a lot of hard work.

So why use IXTEX? For a mathematician the answer is easy: just ask Knuth why
he had to invent TEX in the first place. But even if you aren’t interested in typesetting
complex mathematical formulee, there are many reasons why you might use I/ TEX. Here
are just a few:

o IATEX makes a lot of typesetting decisions for you: spacing, linebreaking, hyphen-
ating, pagebreaking, location of tables etc. are all decided globally to give the
neatest looking output;

e numbering of chapters, sections, pages, equations etc. is done automatically;
e cross-referencing, bibliography citations, table of contents etc. are painless;
e the layout of a table is determined by its contents;

e the source code can be split into a number of manageable files, and can also contain
comments, without affecting the output.

How to run KTEX, and what happens when we do

Table 1.1 on page 1-4 gives an overview of the most common commands you will need
to know on PC or unix, and in particular how to run IATEX.

myfile.tex ETEX myfile.dvi

or PDF]_A’IEX or myfile.pdf

Figure 1.1: What we want IXTEX to do for us

ITEX is designed to read a text document, say myfile.tex, and produce a nicely
formatted output, myfile.dvi (or myfile.pdf) — see Figure 1.1. When we run IXTEX

L“What you see is what you get”

Module 1: Introduction 1-3

there will be (somewhere, depending on your platform) an interactive “running com-
mentary” on how the compilation is proceeding, including any errors and warnings. If
the compilation runs across an error, typing ‘s’ asks IXTEX to press on and do the best
it can, and typing ‘x’ tells it to give up.

Behind the scenes the process is far more complicated than Figure 1.1. There are a
number of auziliary files that IXTEX uses to keep track of a vast amount of formatting in-
formation. For example myfile.aux ensures correct labels are used for cross-referencing
and citations, while myfile.toc oversees the typesetting of a table of contents.

Every time we run IXTEX it reads in any existing auxiliary files, compiles myfile.tex
using this additional information, and finally writes a new version of any auxiliary files
it will need next time — see Figure 1.2.

Note: because it always reads in the old auxiliary files, it is some-
times necessary to run MTEX twice to achieve the expected output.

This is especially true when there are additions or changes to citations and cross-
referencing (the running commentary will usually give you a warning in this case).

ITEX also creates a log file, myfile.log, which contains a transcript of the running
commentary.

‘myfile.aux |
‘myfile.bbl |
%myfile.tocé
%myfile.loté

“imyfile.lof ™.
§ etc. (if arny)é

ETEX

or PDFITEX

myfile.dvi

myfile.tex)
or myfile.pdf

extra files
imported by s :
myfile.tex * myfile.log
(if any) beeeeeserscmmesnessensersesed

Figure 1.2: What KTEX actually does

You needn’t worry about what’s actually going on in the auxiliary files — just be
aware that IXTEX needs to use them, and that you should avoid creating files of your
own with the extensions .aux, .bbl etc.

1-4

Module 1: Introduction

PC (WinEdt)

Unix (emacs)

Edit myfile.tex

Open WinEdt and start new
document, or double click on
myfile.tex in folder

> emacs myfile.tex &
(recommended, but you
could use any other editor)

Compile myfile.tex to
DVI file with IXTEX

Click on E—T :

LaTeX from Accessories menu, or
type Ctrl+Shift+L

' button, or choose

> latex myfile.tex
or choose LaTeX from
Command menu in emacs

Compile myfile.tex to
PDF file with PDFETEX

Click on Eﬁx button, or choose

PDFLaTeX from Accessories/PDF
menu

> pdflatex myfile.tex

Run BiBTEX

Choose BibTeX from Accessories
menu, or type Ctrl+Shift+B

> bibtex myfile.tex
or choose BibTeX from
Command menu in emacs

Convert myfile.dvi to
PDF file

L
Click on +aff button, or choose

dvi2pdf from Accessories/PDF menu

> dvipdf myfile.dvi

Convert myfile.dvi to
postscript (.ps) file

Wi
Click on *A[E button, or choose

DVIPS from Accessories menu, or
type Ctrl+Shift+D

> dvips myfile.dvi

Convert myfile.ps to
PDF file

15
Click on E F"ﬂf button, or choose

ps2pdf from Accessories/PDF menu

> ps2pdf myfile.ps

View myfile.dvi

Click on

on myfile.dvi in folder (opens Yap)

Ty button, or double click

> xdvi myfile.dvi &

View myfile.pdf

fa

Click on #* button, or double click

on myfile.pdf in folder (opens
Acrobat Reader)

> acroread myfile.pdf &

View myfile.ps

e
Click on 9"@ button, or double click

on myfile.ps in folder (opens
GSView)

> gv myfile.ps &
or
> ghostview myfile.ps &

Print output

Choose Print from Yap, Acrobat
Reader or GSView

> lpr myfile.ps
or choose Print from gv,
ghostview or acroread

Table 1.1: Summary of commands — apologies to Mac users!

Module 1: Introduction 1-5

A first BTpX document

Before going too heavily into the details, let’s get the hang of compiling files. In the
editor of your choice type something along the lines of

\documentclass{article}
\begin{document}

This is my very first attempt writing a LaTeX file. Or you can write
something different if that’s not true...

This is a new paragraph, and one of the words might need some
hyphenating.

\end{document}

Make sure you use curly braces where I have! Now save the file as “something .tex”
and, referring to Table 1.1, compile the code.
A couple of things to notice already:

IXTEX treats single linebreaks like spaces.

Blank lines tell INTEX to start a new paragraph.

Indenting is done automatically, with the possible exception of the first paragraph.

ITEX ignores multiple spaces and multiple blank lines; for example the text

« ” “ ..isanew...”.

..1is a new...” compiles as

IXTEX puts extra space at the end of sentences.

IXTEX breaks long words over a line to avoid bad spacing.

If all you ever wanted to do is write paragraph after paragraph of plain text, then that’s
all there is to it... more or less.

Special characters

There are ten characters which have special meanings, so putting them directly into
your source code will not do what you might expect. Table 1.2 lists these characters,
gives a brief description of their special meaning to INTEX, and most importantly tells
us how to achieve the actual symbol in the output.

1-6 Module 1: Introduction

Character Usage Command Output
% followed by comment \% %
~ non-breaking space \"{} -
\ start of command name \backslash \
{ delimiter, eg for command \{ {
arguments
¥ delimiter \} }
part of argument name in definition \# +#
of new command
& column marker in tables \& &
$ start or end of maths-mode \$ $
- superscript in maths-mode \ {3)
_ subscript in maths-mode _ _

Table 1.2: IXTREX’s special characters

The character % is not just useful for comments. IXTEX ignores everything between
a % and the end of the line? Therefore it may also be used to break the input over a line
without introducing a space in the output. For example

This editor may not have 100\% of the room required to avoid line,
breaking.

produces
This editor may not have 100% of the room required to avoid linebreaking.

Of course in this case we could get around the problem by breaking the input line
between avoid and line, but from time to time situations will arise where it really is
best to use this trick — we will see an example in Module 4.

By avoiding special characters, or replacing them by their corresponding command
from Table 1.2 if necessary, you’re now in a position to produce. .. a rather dull looking
novel, say.

That’s the basics. The rest of the course will be devoted to learning ways of producing
more elaborate output.

Zunless preceded by a ¢\’

Module 1: Introduction 1-7

Commands, declarations and environments

The special characters { and } are delimiters — they must always match each other?

and anything between them is treated by IXTEX as a single entity. Placing them around
some plain text, like {text}, will have no effect on the output (but this can be useful
sometimes).

A command can be described as anything in the source code which IXTEX interprets
in a special way. There are three main types of command, and we have seen examples
of each already:

e A special character, eg $
e A\ followed immediately by a single non-number, eg \#
e A\ followed immediately by a string of letters, eg \begin

Note that command names can never contain numbers, so even if we tried to define one
called \ps2pdf, say, W TEX would complain.

Some commands just produce output, for example \today is a shortcut for today’s
date. Some are applied to arguments, for example \begin{document}. Here are some
rough guidelines for arguments:

e mandatory arguments follow the command name and are placed between { and }

e if there is more than one mandatory argument they are listed successively in this
way, as in \command{argl Harg2}{arg3}...

e optional arguments are placed between [and]

e if there is more than one optional argument, usually they are all listed within one
set of [] and separated by commas, as in \command Lopt1 , opt2,opt3...]

e if there are mandatory and optional arguments, the optional ones usually go first,
as in \command Lopt]{arg}

There are a few exceptions to these rules — you may be able to spot one or two in
Table 1.3 below.

The \begin command always takes at least one mandatory argument, envname say,
and must always be paired with a corresponding \end{envname} command. The area
between \begin{envname} and \end{envname} is called an envname environment,
and this is usually treated as a separate paragraph. One environment can be nested
inside another, as long as their respective \end commands are placed in reverse order.

Like commands, environments can take extra mandatory and optional arguments;
the guidelines above apply in a similar way (replace \command with \begin{envnamel}).
Table 1.3 gives some common examples of commands and environments with mandatory
and optional arguments.

Finally there is one other type of command: a declaration (usually) takes no ar-
guments but affects all of the source code which follows it — at least until we tell it to

1-8 Module 1: Introduction

no arguments \today
\begin{document} ... \end{document}

0 mandatory, 1 optional \item[1.]
\begin{figure}[ht!] ... \end{figure}

1 mandatory, 0 optional \author{Chris Wetherell}
\begin{array}{rl} ... \end{array}

1 mandatory, 1 optional \sqrt[3]1{64}
\begin{minipage} [b]{10cm} ... \end{minipage}

1 mandatory, 2 optional \documentclass[12pt,adpaper]{book}

2 mandatory, 0 optional \setlength{\textwidth}{5pt}
\begin{list}{\dag}{\setlength{\parsep}{Opt}} ... \end{list}

2 mandatory, 1 optional \parbox[t]{1in}{hello\\there}
\begin{tabular*}{9ex}[t]1{lcl|} ... \end{tabularx*}

2 mandatory, 2 optional \raisebox{.4ex}[1.5ex][.75ex]{text}

Table 1.3: Mandatory and optional arguments

stop. The extent of the affected text is called the scope of the declaration. The most
common way of defining the scope is to place the declaration and text between { and 7,
as in

{\large This is large text}, and this is normal size.

Note also that the \end{envname} command usually ends the scope, if necessary, of a
declaration inside the envname environment.

Often there is a command and a declaration (or a declaration and an environment)
which produce the same output. For example, to achieve bold text we could either
use the command \textbf{bold text} or the declaration {\bfseries bold text}. In
this case there is no real advantage in doing it one way over the other — so why have
the choice? The short answer is that commands with arguments work best for short
passages of text, and environments are best for long passages of text — declarations sit
somewhere in the middle to take up the slack.

Also note that many commands and environments have a “starred” variation:

\ command*

\begin{envnamex*} ... \end{envnamex}

The starred variation often suppresses the number which would normally be associated
with the un-starred one.

Module 1: Introduction 19

We have already met the most important command and environment in INTEX:
\documentclass and \begin{document} ... \end{document}. Every ITEX docu-
ment must contain these, as in the example on page 1-5.

The area between \documentclass and \begin{document} is called the preamble.
This is where we can give “behind the scenes” instructions about the overall look of
the output. For example, extra packages must be imported in the preamble, and new
commands are usually defined there (although it is sometimes useful to do this later on
also).

The area between \begin{document} and \end{document}?} is called the body, and
this is where the input text goes. It will also contain typesetting commands that control
the local look of the output, for example if some text is to appear in italics or a different
font size.

Any input text (other than comments) above \documentclass will produce an error,
and any text below \end{document} will be ignored.

The \documentclass command takes one mandatory argument, and many optional
arguments — see page 1-5 and Table 1.3. The mandatory argument chooses the class of
document and this choice influences how all other commands are interpreted. The most
common examples are article, book and report, although we will also meet letter
and slides later in the course. It is important to note that some commands, declara-
tions and environments are only available in certain document classes. For example the
command for starting a new chapter, \chapter, is not available in the article class.

The optional arguments for \documentclass override some of the default settings for
a given document class. For example, a book document would normally have a standard
font size of 10pt, have left and right margins set for double-sided printing, and contain
just one column of text. We could instead specify

\documentclass[12pt,oneside,twocolumn] {book}

to override these settings, if we were interested in typesetting a newsletter, say.
We will visit this topic again later, but for the moment we will be happy to let IATEX
keep its default settings.

Sectional units

In TEX it is easy to break the output into chapters, sections and so on. The commands
in Table 1.4 define successively smaller sectional units. They each take one mandatory
argument, namely the heading of that sectional unit.

\part \chapter \section \subsection
\subsubsection \paragraph \subparagraph

Table 1.4: Sectioning commands

In the book and report document classes, \part and \chapter both start a new page.
In the article class, \part does not start a new page and \chapter is not available.

1-10 Module 1: Introduction

Numbering of sectional units is handled automatically. A sectioning command can
behave a little like a declaration, in that it can influence the numbering of things which
follow it in the source code. The scope in this case is delimited by the next sectioning
command of equal or higher rank. Here is an example of what to expect:

Chapter 4

\chapter{A chapter}

In this chapter...

A chapter

\section{A section}

In this chapter. ..
Now we look at...

4.1 A section

\subsection{A subsection}

Now we look at. ..
On the other hand...

4.1.1 A subsection
\subsubsection{A subsubsection} On the other hand

Finally...
A subsubsection

Finally. ..

To suppress numbering of a sectional unit use the starred variation. The headings in
this document are all defined by \section*{heading} commands.

Titlepages and abstracts

A titlepage environment near the top of the document can be used, not surprisingly,
to typeset a titlepage. Its contents will appear alone on an unnumbered page, but you
are entirely responsible for visual formatting (we will see how to do this in the next few
sections, where we look at ways of customising spacing, justification and font sizes).

Alternatively, WTEX can do all the typesetting for you with the \maketitle com-
mand. It relies on three additional commands, \title, \author and \date, each of
which takes one mandatory argument. The argument for \author can contain one
name, or a list of names separated by an \and command — this helps with spacing but
does not produce “and” in the output. If the \date command is missing, I TEX displays
today’s date, equivalent to typing \date{\today}. To suppress the date, use \date{}.

The exact layout prescribed by \maketitle depends on the document class. In
an article this information appears at the top of the first page, and the text of the
document starts directly below:

Module 1: Introduction 1-11

\title{An example article} An example article
\author{Pierre de Fermat

\and Chris Wetherell}
\date{December 25, 1960}
\maketitle

Pierre de Fermat Chris Wetherell

December 25, 1960

In this article we

answer. ..
In this article we answer. ..

In the book and report classes, the titlepage information appears on a separate unnum-
bered page. These defaults can be reversed with optional arguments:

\documentclass[titlepage] {article}
\documentclass[notitlepage] {book}
\documentclass[notitlepage] {report}

An abstract can be provided in the article or report classes with the abstract
environment (it’s not available in book, so you might use \chapter*{Abstract}). In
article the abstract is typeset in \small font size and appears wherever you put it in
the source code — usually just after the \maketitle command:

\begin{abstract} Abstract

During this course we During this course we will. . .
will...

\end{abstract}

In report the abstract appears on a page by itself. These defaults are also reversed by
the appropriate titlepage or notitlepage argument.

Spacing

Throughout the rest of the course we will occasionally use the symbol |, to denote a
single white space in the source code.

ITEX is very good at deciding how to manage the spacing of a document, whether
it’s inter-word spacing on a line, inter-paragraph spacing on a page, or inter-section
spacing within the whole document. It’s not infallable though, so from time to time
you’ll need to do some fine-tuning to get the output just right.

Note: spacing throughout the whole document may change if you
add or remove even a small amount of text, so don’t do any manual
fine-tuning until you’re absolutely sure the content is final.

This said, there are a number of tricks you should get used to using that will help INTEX
make the right decisions.

1-12 Module 1: Introduction

IATEX puts a little more space between sentences than it does between words, so you
don’t need to do this yourself in the source code — multiple spaces are ignored anyway,
so it wouldn’t make any difference if you tried. For typographical purposes it interprets
the strings ‘.., ‘7.7, ‘')’ and ‘:)" as the end of a sentence, unless they were immediately
preceded by a capital letter. This way initials like C. Wetherell are handled correctly.
However, occasionally you will want to end a sentence with a capital letter, like C. Or
use abbreviations like Prof. in the middle of a sentence, without adding the extra space.
To achieve these you would type

...letter, 1ike ,C\@. Or use abbreviations like Prof._in_the...

The \@ command followed by a punctuation character tells I TEX explicitly that the
sentence has ended. The \, command inserts a normal inter-word space, so in particular
it may be used repeatedly to insert extra space:

...may_beused\ \ \ _repeatedly...

Another useful space command is \, which inserts a small space, roughly half the width
of the inter-word space _.

Non-breaking spaces are achieved with the ~ special character. It has the same size
as a regular inter-word space, but ITEX will not break a line at that point. This is
especially useful for names and labels, like Dr~C. “Wetherell or Equation™ (1), so this
is a good habit to get into even if you don’t think the text will be near the end of a line.

A blank line or \par command in the source code tells I¥TEX to start a new para-
graph. Multiple blank lines or \par’s do not produce blank lines in the output, however.

A new paragraph may or may not be indented automatically, depending on the
document class. The \indent and \noindent commands at the beginning of a paragraph
will override the default in the obvious way. They will be ignored if IXTEX was already
going to do what you wanted.

By default ITEX justifies text on both left and right margins. Table 1.5 gives the
declarations and equivalent environments which justify the output differently (note the
spelling of “center”).

left justified \raggedright \begin{flushleft} ... \end{flushleft}
right justified \raggedleft \begin{flushright} ... \end{flushright}

centered \centering \begin{center} ... \end{center}

Table 1.5: Justification commands

In addition to starting a new paragraph with \noindent , there are three commands
that can be used to start a new line without indenting. The \linebreak command
tells IATRX to stretch the inter-word spacing so that the text is left-right justified. For
example

This is stretched.\linebreak A new line here.

Module 1: Introduction 1-13

produces

This is stretched.
A new line here.

On the other hand, \newline and \\ both start a new line without stretching the
previous one. In combination with a blank line in the source code, we can now produce
a blank line in the output:

This is followed by a blank line.\\

This follows a blank line.

KTEX will give an error if you try to use \newline or \\ by itself after a blank line.

Similarly there are commands for manually starting a new page, namely \pagebreak
and \newpage. The first stretches the inter-paragraph spacing so that the preceding text
fills out a full page; the latter does not.

Finally there are a number of useful commands which allow you to insert horizontal
and vertical space of whatever length you wish. The commands \hspace and \vspace
take one mandatory argument, namely the desired length (which may be negative).
There are seven basic units of measurement:

mm a millimetre pc lpc=12pt

cm lcm=10mm ex the height of the letter ‘x’ in

the current font
in lin=2.54cm

em the width of the letter ‘M’ in

pt lin=72.27pt the current font

Thus space\hspace{0.5in}here produces “space here” as we would hope. The
\vspace command is usually used between paragraphs; if not then the extra space
is added after the line in which the command appears. The commands \smallskip,
\medskip and \bigskip insert vertical space of a predefined length.

There is an extremely useful length called \fill. When used as the argument of
\hspace (or \vspace), IWTEX will insert all of the space which is available on the current
line (or page). When two or more such commands appear on the one line (or page) the
available space is shared evenly among them. Thus

This\hspace{\fill}\hspace{\fill}is\hspace{\fill}stretched.

produces

This is stretched.
The command \hfill is a shortcut for \hspace{\fill}, and \vfill is a shortcut for
\vspace{\fill}

IXTEX will ignore any excess space that \hspace or \vspace try to insert over a
linebreak or pagebreak respectively. The starred forms \hspace* and \vspace* are
never ignored. For example, adding \hfill at the end of a line will have no effect, so
instead you would use \hspace*{\fill}.

1-14 Module 1: Introduction

Accents, special symbols and the like

The quotation marks ¢ and > work just how you would expect, but in N TEX we very

rarely use the " character. Instead we use ‘¢ and ’’. To differentiate between single
and double quotes, for example in writing

“‘Diet Coke’ is an oxymoron,” she said.

we would use the \, command to insert a small space: ¢\, ‘Diet...

Table 1.6 shows how to create accents in IXTEX. The special commands \i and \j
remove the dot from i and j respectively, specifically so that these letters can also be
accented: \ ‘{\i} produces 1.

e \‘{e} e \"{e} ¢ \v{e} e \c{e}
¢ \’{e} e \={e} ¢ \H{e} e \d{e}
e \"{e} e \.{e’} ée \t{ee} e \b{e}
é \"{e} ¢ \u{e}

Table 1.6: Accents in KTEX

Table 1.7 lists a number of special symbols, including a reminder of how to typeset
the ten special characters. IXTEX will ignore any white space that immediately follows a
command whose name ends in a letter. For example \LaTeX_will jignore... produces
“INTEXwill ignore. ..” | thus an extra space must be added explicitly with _, if desired.

% \h TN} { \ oo\
\ \backslash # \# & \& $ \$
©N{D - \C e \oe E \OE
e \ae A \AE a \aa A \AA
2 \o O \0 I\l L \L
3 \ss i P ... \ldots
t \dag I \ddag § \S g \pP
© \copyright £ \pounds TEX \TeX TEX \LaTeX

Table 1.7: Special symbols

Playing with fonts

In BTREX there are many ways to modify the look of output text.

Font styles are governed by three attributes: family, shape and series. Table 1.8
shows how to specify each of these as well as how to return to the default settings
(which are determined by the document class). Each choice can be made either by a
command with argument or by a declaration, and they can be made in any combination
(IWTEX may not always be able to create the intended font, but it will try to choose
something which 4t thinks is reasonably close).

Module 1: Introduction 1-15

Roman \textrm{Roman} {\rmfamily Roman}
Typewriter \texttt{Typewriter} {\ttfamily Typewriter}
Sans Serif \textsf{Sans Serif} {\sffamily Sans Serif}
Upright \textup{Upright} {\upshape Upright}
Ttalic \textit{Italic} {\itshape Italic}
Slant \textsl{Slant} {\slshape Slant}
SMALL CAPs \textsc{Small Caps} {\scshape Small Caps}
Medium \textmd{Medium} {\mdseries Medium}
Boldface \textbf{Boldface} {\bfseries Boldface}

Normal Font \textnormal{Normal Font} {\normalfont Normal Font}

Table 1.8: Changing font style

Note that the scope of a font declaration will only be delimited by a later font declaration
which alters the same font attribute. For example

\slshape This is Slant, \bfseries this is Bold Slant,
\upshape and this is Bold Upright.

produces

This is Slant, this is Bold Slant, and this is Bold Upright.
The scope of \slshape ends at \upshape, but the scope of \bfseries does not.

Two slightly different ways of changing the style of fonts are with emphasised text
and verbatim text — at a glance they look just like italics and typewriter font, but
they behave a little differently.

Emphasising is achieved with the \emph command or \em declaration, for example
\emph{emphasised} or {\em emphasised}. How IXTEX actually interprets this is de-
termined by the document class — it just happens that in the book class, which is used
for these notes, they are interpreted as \textit and \itshape respectively.

On the other hand the \verb command and verbatim environment are always type-
set in typewriter font, but in each case the formatting of output is determined ezactly by
the formatting of the source code. This means in particular that all special characters
are treated as normal characters, and extra spaces in the source code also appear in the
output. This is particularly useful for displaying things like computer programs, and
indeed this is how all the sample code is achieved in these notes: the example following
Table 1.8 was created with

\begin{verbatim}

\slshape This is Slant, \bfseries this is Bold Slant,
\upshape and this is Bold Upright.

\end{verbatim}

1-16 Module 1: Introduction

The only text following the statement \begin{verbatim} which is interpreted in a
special way is the 14 character string \end{verbatim} which ends the environment.

The command \verb is applied to one mandatory argument as we would expect —
the difference here is that the argument is not delimited by { and }, but instead by a pair
of identical non-letters which do not appear in the argument. For example, to typeset
\end{verbatim}, which cannot appear inside a verbatim environment, we would use
something like

\verb+\end{verbatim}+

I tend to use a pair of +’s as delimiters, but a pair of 2’s or a pair of @’s would be just
as good, as long as 2 or @ didn’t appear in the argument.

Note that \verb+arg+ must appear on a single line of the source code, but it cannot
appear in the argument of another command.

Only the non-letter * cannot be used as the delimiter for \verb, because of the
starred variation. The command \verb* and environment verbatim* work in exactly
the same way as their un-starred counterparts, except that white spaces are replaced by
the symbol .

In IMTEX the standard font size is set by default, or with an optional argument to
\documentclass. These notes have 11pt as the standard — it’s the size of the “normal”
text in paragraphs. IXTEX can create text of an arbitrary size (we will see how later in
the course), but for most purposes it suffices to use one of ten predefined font sizes: the
standard itself, four which are smaller, and five which are larger. These are produced
with declarations, as outlined in Table 1.9. The scope of one such declaration will be
delimited, if necessary, by another which follows it. Note also that the various font sizes
can all be used in combination with the commands and declarations in Table 1.8.

{\tiny Sample text} Sample text
{\scriptsize Sample text} Sample text

{\footnotesize Sample text} Sample text

{\small Sample text} Sample text
{\normalsize Sample text} Sample text
{\large Sample text} Sample text
{\Large Sample text} Sample text
{\LARGE Sample text} Sample text
{\huge Sample text} Sample text

{\Huge Sample text} S&Hlpl@ teXt

Table 1.9: Changing font size

Module 1: Introduction 1-17

Hyphens

There are three hyphens you can use in KTEX:
- intra-word hyphen, as in “up-to-date”
- for ranges, as in “20-53” or “A-7Z”
-—- for interjections — like so!

You never need to use - to break a long word at the end of a line, though. INTEX uses
an extensive dictionary to do this automatically if it thinks it necessary. If it doesn’t
recognise a word it will try to guess the most logical place for a hyphen, but you can
override this choice at any time with the \-, \mbox and \hyphenation commands.

The \- command typed within a word does not produce a hyphen, but tells KTEX
where in the word it is allowed to break over a line if needed. Therefore typing
hyp\-hena\-tion will, depending on whether it is to be broken over a line, only produce
one of “hyphenation”, “hyp- henation” or “hyphena- tion”. Occasionally you will want
to suppress TEX’s urge to hyphenate. You can do this with the \mbox command, al-
though the output may look the worse for it: typing \mbox{hyphenation} forces “hyphenation”
to hang over the end of the line (actually, I had to trick BTEX into doing that with non-
breaking spaces too).

These options are fine if you use the offending word once or twice, but any more
often and it’s better to use the \hyphenation command in the preamble:

\hyphenation{hyp-hena-tion,Weth-er-ell,Fermat}

Now whenever we type Wetherell, IXTEX will know that it can only produce one of
“Wetherell”, “Weth- erell” or “Wether- ell”. It now also knows that “Fermat” can never
be broken over a line.

Note that these commands can be applied to any words we like, even if I TEX thought
it knew how to deal with them already.

What to do when things go wrong

The running commentary IXTEX produces while compiling contains a swathe of technical
information — have a close look at a .log file sometime. To the user the most important
messages are warnings and errors.

Warnings are just that: IMTEX will continue compiling but it thinks something is
slightly amiss. Probably the most common warnings are of the form

Overfull \hbox (1.38033pt too wide) in paragraph at lines 270--270
Underfull \hbox (badness 10000) in paragraph at lines 459--462

The first tells you that text in the output, corresponding to line 270 of the source file, has
run past the right margin by 1.38033 pt. The second is just the opposite: INTEX thinks

1-18 Module 1: Introduction

that the inter-word spacing has been stretched too much while trying to accommodate
left-right justification. In these situations you might need to fine-tune the spacing near
that text, but remember that you should only do this to the very final version of your
document!

Other common warnings occur when changes are made to cross-referencing and num-
bering — refer to Figure 1.2 and the comments nearby on page 1-3.

Errors are more serious. The compilation will cease and KTEX will await your
instructions. The ones to know are:

X quit KTEX

h give more information about this error

Enter try to ignore this error and keep compiling

s scrollmode: like pressing Enter whenever an error occurs

Sometimes I TEX will prompt you to correct the error as you go, but this will not correct
the source file. I suggest you quit and make the correction in the file instead.
Many errors are simple misspellings of command names or environments:

! Undefined control sequence. 1.1147 \chatper

{Introduction}
?

Occasionally we \end nested environments in the wrong order, or forget to \end them
altogether:
! LaTeX Error:

\begin{titlepage} on input line 21 ended by \end{document}.

See the LaTeX manual or LaTeX Companion for explanation. Type H
<return> for immediate help.

1.1160 \end{document}
?

And sometimes we forget a } delimiter:

Runaway argument? { \par \par \noindent And sometimes we \verb +\end
+ nested en\ETC. ! File ended while scanning use of \textbf .
<inserted text>

\par
<*> modulel.tex

?

The moral of the story: KTEX can at times be a very perplexing package, but
spending just a little time trying to understand the warning and error messages will
help you get the document you want much more efficiently.

